Orthogonal polynomials for modified Gegenbauer weight and corresponding quadratures
نویسندگان
چکیده
منابع مشابه
Orthogonal polynomials for modified Gegenbauer weight and corresponding quadratures
In this paper we consider polynomials orthogonal with respect to the linear functional L : P → C, defined by L[p] = ∫ 1 −1 p(x)(1 − x 2)λ−1/2 exp(iζ x) dx, where P is a linear space of all algebraic polynomials, λ > −1/2 and ζ ∈ R. We prove the existence of such polynomials for some pairs of λ and ζ , give some their properties, and finally give an application to numerical integration of highly...
متن کاملOrthogonal Polynomials for the Oscillatory-gegenbauer Weight
This is a continuation of our previous investigations on polynomials orthogonal with respect to the linear functional L : P → C, where L = ∫ 1 −1 p(x) dμ(x), dμ(x) = (1 − x2)λ−1/2 exp(iζx) dx, and P is a linear space of all algebraic polynomials. Here, we prove an extension of our previous existence theorem for rational λ ∈ (−1/2, 0], give some hypothesis on three-term recurrence coefficients, ...
متن کاملNumerical quadratures and orthogonal polynomials
Orthogonal polynomials of different kinds as the basic tools play very important role in construction and analysis of quadrature formulas of maximal and nearly maximal algebraic degree of exactness. In this survey paper we give an account on some important connections between orthogonal polynomials and Gaussian quadratures, as well as several types of generalized orthogonal polynomials and corr...
متن کاملStrong asymptotics for Gegenbauer-Sobolev orthogonal polynomials
We study the asymptotic behaviour of the monic orthogonal polynomials with respect to the Gegenbauer-Sobolev inner product (f, g)S = 〈f, g〉 + λ〈f ′, g′〉 where 〈f, g〉 = ∫ 1 −1 f(x)g(x)(1 − x 2)α−1/2dx with α > −1/2 and λ > 0. The asymptotics of the zeros and norms of these polynomials is also established. The study of the orthogonal polynomials with respect to the inner products that involve der...
متن کاملOrthogonal polynomials, Gaussian quadratures, and PDEs
them particularly important in solvinG physical problems. Also, Gaussian integration provides a highly accurate and efficient algorithm for integrating functions. The value of the methods I describe in this installment of “Computing Prescriptions” depends on the basic assumption that a finite-order polynomial can effectively approximate a function. Therefore, a finite sum of orthogonal polynomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2009.01.049